Основные понятия, свя­занные с работой холодиль­ной машины. Охлаждение в кондиционе­рах производится за счет погло­щения тепла при кипении жид­кости. Когда мы говорим о кипящей жидкости, мы, естественно, дума­ем, что она горячая. Однако это не совсем верно.

Во-первых, температура кипе­ния жидкости зависит от давле­ния окружающей среды. Чем выше давление, тем выше темпе­ратура кипения, и наоборот: чем ниже давление, тем ниже темпе­ратура кипения. При нормальном атмосфер­ном давлении, равном 7б0 мм рт.ст. (1 атм), вода кипит при плюс 100°С, но если давление по­ниженное, как например в горах на высоте 7000-8000 м, вода нач­нет кипеть уже при температуре плюс 40-60°С. Во-вторых, при одинаковых условиях разные жидкости име­ют различные температуры ки­пения. Например, фреон R-22, широ­ко используемый в холодильной технике, при нормальном атмос­ферном давлении имеет темпе­ратуру кипения минус 40,8°С.

 

Если жидкий фреон находит­ся в открытом сосуде, то есть при

атмосферном давлении и темпе­ратуре окружающей среды, то он немедленно вскипает, поглощая при этом большое количество тепла из окружающей среды или любого материала, с которым на­ходится в контакте. В холодиль­ной машине фреон кипит не в открытом сосуде, а в специаль­ном теплообменнике, называе­мом испарителем. При этом ки­пящий в трубках испарителя фреон активно поглощает теп­ло от воздушного потока, омы­вающего наружную, как прави­ло, оребренную поверхность трубок.

Рассмотрим процесс конден­сации паров жидкости на приме­ре фреона R-22. Температура конденсации паров фреона, так же, как и температура кипения, зависит от давления окружаю­щей среды. Чем выше давление, тем выше температура конденса­ции. Так, например, конденсация паров фреона R-22 при давлении 23 атм., начинается уже при тем­пературе плюс 55°С. Процесс конденсации фреоновых паров, как и любой другой жидкости, со­провождается выделением боль­шого количества тепла в окружа­ющую среду или, применительно к холодильной машине, переда­чей этого тепла потоку воздуха или жидкости в специальном теплообменнике, называемом конденсатором.

Естественно, чтобы процесс кипения фреона в испарителе и охлаждения воздуха, а также про­цесс конденсации и отвод тепла в конденсаторе были непрерыв­ными, необходимо постоянно «подливать» в испаритель жид­кий фреон, а в конденсатор по­стоянно подавать пары фреона. Такой непрерывный процесс (цикл) осуществляется в холо­дильной машине.

Наиболее обширный класс холодильных машин базируется на компрессионном цикле ох­лаждения, основными конструк­тивными элементами которого являются компрессор, испари­тель, конденсатор и регулятор потока (капиллярная трубка), соединенные трубопроводами и представляющие собой замк­нутую систему, в которой цир­куляцию хладагента (фреона) осуществляет компрессор. Кро­ме обеспечения циркуляции, компрессор поддерживает в конденсаторе (на линии нагне­тания) высокое давление поряд­ка 20-23 атм.

Теперь, когда рассмотрены ос­новные понятия, связанные с ра­ботой холодильной машины, пе­рейдем к более подробному рассмотрению схемы .компрес­сионного цикла охлаждения, конструктивному исполнению и функциональному назначению отдельных узлов и элементов.

                                                                   Схема компрессионного цикла охлаждения

Кондиционер — это та же хо­лодильная машина, предназна­ченная для тепловлажностной обработки воздушного потока. Кроме того, кондиционер облада­ет существенно большими воз­можностями, более сложной кон­струкцией и многочисленными дополнительными опциями. Обработка воздуха предпола­гает придание ему определенных кондиций, таких как температура и влажность, а также направле­ние движения и подвижность (скорость движения).

Остановимся на принципе ра­боты и физических процессах, происходящих в холодильной машине (кондиционере). Охлаждение в кондиционе­ре обеспечивается непрерыв­ной циркуляцией, кипением и конденсацией хладагента в замк­нутой системе. Кипение хлада­гента происходит при низком давлении и низкой температуре, а конденсация — при высоком давлении и высокой температу­ре. Принципиальная схема комп­рессионного цикла охлаждения показана на рис. 1. Начнем рассмотрение работы цикла с выхода испарителя (уча­сток 1-1). Здесь хладагент на­ходится в парообразном состоя­нии с низким давлением и температурой. Парообразный хладагент вса­сывается компрессором, кото­рый повышает его давление до 15-25 атм и температуру до плюс 70-90°С (участок 2-2). Далее в конденсаторе горячий парообразный хладагент охлаж­дается и конденсируется, то есть переходит в жидкую фазу. Кон­денсатор может быть либо с воз­душным, либо с водяным охлаж­дением в зависимости от типа холодильной системы. На выходе из конденсатора (точка 3) хладагент находится в жидком состоянии при высоком давлении. Размеры конденсатора выбираются таким образом, что­бы газ полностью сконденсиро­вался внутри конденсатора. По­этому температура жидкости на выходе из конденсатора оказыва­ется несколько ниже температу­ры конденсации. 

 

Переохлаждение в конденсаторах с воздушным ох­лаждением обычно составляет примерно плюс 4-7°С. При этом температура кон­денсации примерно на 10-20°С выше температуры атмосферно­го воздуха. Затем хладагент в жидкой фазе при высокой температуре и дав­лении поступает в регулятор по­тока, где давление смеси резко уменьшается, часть жидкости при этом может испариться, переходя в парообразную фазу. Таким обра­зом, в испаритель попадает смесь пара и жидкости (точка 4).

Жидкость кипит в испарителе, отбирая тепло от окружающего воздуха, и вновь переходит в па-рообразное состояние.

Размеры испарителя выбира­ются таким образом, чтобы жид­кость полностью испарилась внутри испарителя. Поэтому тем­пература пара на выходе из испа­рителя оказывается выше темпе­ратуры кипения, происходит так называемый перегрев хладагента в испарителе. В этом случае даже самые маленькие капельки хлада­гента испаряются, и в компрессор не попадает жидкость. Следует от­метить, что в случае попадания жидкого хладагента в компрессор, так называемого «гидравличес­кого удара», возможны поврежде­ния и поломки клапанов и других деталей компрессора.

Перегретый пар выходит из испарителя (точка 1J), и цикл возобновляется.

Таким образом, хладагент по­стоянно циркулирует по замкну­тому контуру, меняя свое агрегат­ное состояние с жидкого на парообразное и наоборот.

Все компрессионные циклы холодильных машин включают два определенных уровня давле­ния. Граница между ними прохо­дит через нагнетательный кла­пан на выходе компрессора с одной стороны и выход из регу­лятора потока (из капиллярной трубки) с другой стороны.

Нагнетательный клапан комп­рессора и выходное отверстие регулятора потока являются раз­делительными точками между сторонами высокого и низкого давлений в холодильной машине.

На стороне высокого давле­ния находятся все элементы, ра­ботающие при давлении конден­сации.

На стороне низкого давления находятся все элементы, работа­ющие при давлении испарения. Несмотря на то, что существу­ет много типов компрессионных холодильных машин, принципи­альная схема цикла в них практи­чески одинакова.